
Network Firewalls
Kenneth Ingham Stephanie Forrest

ingham@cs.unm.edu forrest@cs.unm.edu

University of New Mexico University of New Mexico Santa Fe Institute

Department of Computer Science Department of Computer Science 1399 Hyde Park Road

MSC01 1130 MSC01 1130 Santa Fe, NM 87501

1 University of New Mexico 1 University of New Mexico

Albuquerque, NM 87131-0001 Albuquerque, NM 87131-0001

Contents

1 Introduction 3

2 The Need for Firewalls 7

3 Firewall architectures 9

3.1 Packet filtering . 10

3.1.1 Packet Filtering with State . 11

3.1.2 Improving Packet Filter Specification . 12

3.2 Proxies . 15

4 Firewalls at various ISO network levels 17

4.1 Physical layer . 17

4.2 Data link layer . 18

4.2.1 Filtering on MAC address . 18

4.2.2 Bridging firewalls . 19

4.3 Network . 19

1

4.4 Network- and host-based filtering . 20

4.4.1 Multicast . 20

4.4.2 Network Address Translation . 22

4.5 Transport . 23

4.6 Presentation . 23

4.7 Application . 24

5 Other approaches 24

5.1 Distributed Firewalls . 25

5.2 Dynamic firewalls . 26

5.3 Normalization . 26

5.4 Signature-based Firewalls . 27

5.5 Transient Addressing . 27

6 Firewall Testing 28

7 What firewalls do not protect against 29

7.1 Data Which Passes Through the Firewall . 29

7.2 Servers on the DMZ . 31

7.3 Insider Attacks . 31

8 Future Challenges for Firewalls 32

8.1 VPNs . 32

8.2 Peer-to-peer Networking . 32

8.3 HTTP as a “universal transport protocol” . 33

9 Conclusion 33

2

Abstract

Firewalls are network devices that enforce an organization’s security policy. Since their

development, various methods have been used to implement firewalls. These methods filter

network traffic at one or more of the seven layers of the ISO network model, most commonly at

the application, transport, network, and data-link levels. Newer methods, which have not yet

been widely adopted, include protocol normalization and distributed firewalls.

Firewalls involve more than the technology to implement them. Specifying a set of filtering

rules, known as apolicy, is typically complicated and error-prone. High-level languages have

been developed to simplify the task of correctly defining a firewall’s policy. Once a policy has

been specified, testing is required to determine if the firewall correctly implements the policy.

Because some data must be able to pass in and out of a firewall, in order for the protected

network to be useful, not all attacks can be stopped by firewalls. Some emerging technologies,

such as Virtual Private Networks (VPN) and peer-to-peer networking pose new challenges for

existing firewall technology.

1 Introduction

The idea of a wall to keep out intruders dates back thousands of years. Over two thousand

years ago, the Chinese built the Great Wall as protection from neighboring northern tribes.

European kings built castles with high walls and moats to protect themselves and their subjects,

both from invading armies and from marauding bands intent on pillaging and looting. The term

“firewall” was in use as early as 1764 to describe walls which separated the parts of a building most

likely to have a fire (e.g., a kitchen) from the rest of a structure [40]. These physical barriers

prevented or slowed a fire’s spread throughout a building, saving both lives and property. A related

use of the term is described by Schneier [60]:

Coal-powered trains had a large furnace in the engine room, along with a pile of coal.

3

The engineer would shovel coal into the engine. This process created coal dust, which

was highly flammable. Occasionally the coal dust would catch fire, causing an engine

fire that sometimes spread into the passenger cars. Since dead passengers reduced

revenue, train engines were built with iron walls right behind the engine compartment.

This stopped fires from spreading into the passenger cars, but didn’t protect the

engineer between the coal pile and the furnace.

This chapter is concerned with firewalls in a more modern setting—computer networks. The

predecessors to firewalls for network security were the routers used in the late 1980s to separate

networks from one another. A network misconfiguration which caused problems on one side of the

router was largely isolated from the network on the other side. In a similar vein, so-called “chatty”

protocols on one network (which used broadcasts for much of their configuration) would not affect

the other network’s bandwidth [2]. These historical examples illustrate how the term “firewall”

came to describe a device or collection of devices which separates its occupants from potentially

dangerous external environments (e.g., the Internet). A firewall is designed to prevent or slow the

spread of dangerous events.

Firewalls have existed since about 1987, and several surveys and histories have been written

(e.g., [34, 52, 11, 42]). In this chapter, we give an updated and more comprehensive survey of

firewall technology. Several books have been written which describe how to build a firewall (e.g.,

[15, 71]). These books are excellent for people wanting to either evaluate a commercial firewall or

who are implementing their own firewall. However, neither spends much time on firewall history,

nor do they provide references to peer-reviewed literature.

For the purposes of this chapter, we define a firewall as a machine or collection of machines

between two networks, meeting the following criteria:

• The firewall is at the boundary between the two networks;

4

• All traffic between the two networks must pass through the firewall;

• The firewall has a mechanism to allow some traffic to pass while blocking other traffic (this is

often called filtering). The rules describing what traffic is allowed enforce the firewall’s

policy.

Additional desirable criteria include:

• Resistance to security compromise;

• Auditing and accounting capabilities;

• Resource monitoring;

• No user accounts or direct user access;

• Strong authentication for proxies (e.g., smart cards rather than simple passwords);

• Fail-safety: If it fails, the protected system(s) is(are) still secure because no traffic is allowed

to pass through the firewall.

The fact that a firewall is at the boundary between two networks has also led to firewalls being

called “perimeter security”—see, for example, Figure 1.

Firewalls function by filtering traffic at one or more (today, normally multiple) layers in the

network protocol stack. These layers are described using the ISO seven-layer model for networking

[36]:

5

ISO level Internet example

Application File Transfer Protocol (FTP), Telnet

Presentation e.g., Common Object Request Broker Architec-

ture (CORBA)

Session no directly corresponding protocol

Transport Transport Control Protocol (TCP), User Data-

gram Protocol (UDP)

Network Internet Protocol (IP)

Data link Ethernet or Asynchronous Transfer Mode (ATM)

Physical twisted pair or fiber optic cable
The protocols used on the Internet for these layers, as well as all other Internet standards are

specified by documents known as Requests for Comments (RFCs) [67].

This chapter is divided into several sections. Section 2 describes the history and rationale for

organizations adopting firewalls. Security professionals build firewalls using many different

architectures, depending on the security needs of the organization, and Section 3 describes several

of these choices. Section 4 reviews the ISO protocol layers, describing firewall technology at each

relevant layer. Section 5 considers alternative approaches to firewall construction; these approaches

are typically more experimental, but they represent technology that could appear in common

firewalls in the near future. Once a firewall is constructed, it must be tested to show that it actually

enforces the organization’s security policy; testing is the subject of Section 6. Although firewalls are

an important tool for securing an organization’s network, they have limitations which are discussed

in Section 7. Section 8 discusses some projected challenges for firewalls in the face of

technicological change, and Section 9 concludes the chapter.

6

2 The Need for Firewalls

In the early years, the Internet supported a small community of compatible users who valued

openness for sharing and collaboration. This view was challenged by the Morris Worm [22].

However, even without the Morris worm, the end of the open, trusting community would have come

soon through growth and diversification. Examples of successful or attempted intrusions around the

same time include: Clifford Stoll’s discovery of German spies tampering with his system [63], and

Bill Cheswick’s “Evening with Berferd” [13] in which he set up a simple electronic “jail” for an

attacker. In this jail, the attacker was unable to affect the real system but was left with the

impression that he or she had successfully broken in. Cheswick was able to observe everything the

attacker did, learning from these actions, and alerting system administrators of the networks from

where the attacks were originating. Such incidents clearly signaled the end of an open and benign

Internet. By 1992 Steve Bellovin described a collection of attacks that he had noticed while

monitoring the AT&T firewall and the networks around it [7]. The result was clear—there were

many untrustworthy and even malicious users on the Internet.

When networks are connected together, a different level of trust often exists on the different

sides of the connection. “Trust” in this sense means that an organization believes that both the

software and the users on its computers are not malicious. Firewalls enforce trust boundaries, which

are imposed for several reasons:

Security problems in operating systems:Operating systems have a history of insecure

configurations. For example, Windows 95 and Windows 98 were widely distributed with

windows file sharing enabled by default; many viruses exploited this vulnerability (e.g.,

[16, 17]). A second example is Red Hat Linux versions 6.2 and 7.0, which were vulnerable to

three remote exploits when the operating was installed using default options [18]. It is an

on-going and expensive process to secure every user’s machine, and many organizations

7

consciously decide not to secure the machines inside their firewall. If a machine on the inside

is ever compromised, the remaining machines are likely also vulnerable [53], a situation that

has been described as “a sort of crunchy shell around a soft, chewy center” [14].

Individuals can protect a single machine connected to the Internet with a personal

firewall. Rather than trying to secure the underlying operating system, these firewalls simply

prevent some types of communication. Such firewalls are often used in homes and on laptops

when they are outside their normal firewall. In this case, the trust boundary is the network

interface of the machine.

Organizations often use firewalls to prevent a compromised machine inside from

attacking machines outside. In this case, the firewall protects the organization from possible

liability due to propagating an attack.

Preventing access to information:National firewalls (attempt to) limit the activities of their users

on the Internet, for example China [49]. A similar idea in the US is the Children’s Internet

Protection Act (CHIPA) which mandates that certain information be filtered. This law requires

that schools and libraries which receive federal funding block certain classes of web content.

Preventing Information Leaks: Because all traffic leaving a network must pass through the

firewall, it can be used to reduce information leaks, as in [55]:

The key criterion for success for the Digital corporate gateways is preventing an

unauthorized or unnoticed leak of data to the outside.

Enforcing Policy: Firewalls are one part of an overall security policy; they enforce the rules about

which network traffic is allowed to enter or leave a network. These policies restrict the use of

certain applications, restrict which remote machines may be contacted, and/or limit the

bandwidth.

8

Auditing: If a security breach (which does not include the firewall) occurs, audit trails can be used

to help determine what happened. Audit trails have also been used to monitor employees, e.g.,

for using work network resources for non-work purposes.

3 Firewall architectures

Firewalls range from simple machines designed to be purchased “off-the-shelf” and installed

by a person unskilled in network security (e.g., as shown in Figure 1) to complex, multiple-machine

custom installations used in large organizations. Regardless of their complexity, all firewalls have

the concept of “inside” for the protected network, and “outside” for the untrusted network. These

terms are used even when a firewall protects the outside world from potentially compromised

machines inside.

Another common feature of firewalls is the existence of a DMZ (named for the demilitarized

zone separating North and South Korea) or “screened network.” Examples of how a DMZ may be

constructed are illustrated in Figures 2 and 3. Machines such as email and web servers are often

placed on the DMZ. These machines are not allowed to make connections to machines on the inside

of the firewall, but machines on the insideareallowed to make connections to the DMZ machines.

Thus if a server on the DMZ is compromised, the attacker cannot directly attack machines on the

inside. Servers are particularly vulnerable because they must be accessed in order to be useful, and

current firewalls are largely ineffective against attacks through these services (see Section 5.4). can

do little against Examples of attacks on servers include the “Code Red” and “Nimda” worms which

attacked Microsoft Windows machines running Microsoft’s web server IIS, and in the case of

Nimda, several additional routes.

Firewall architectures are constrained by the type of filtering (described shortly) and the

presence or absence of a DMZ.

9

3.1 Packet filtering

Packet filtering is looking at the headers in network packets and deciding whether or not to

allow the packet based on the policy enforced by the firewall. Packet filtering for network security

began with Mogul’s paper describingscreendin 1989 [50]. Most early work on packet filtering for

security emphasized performance (e.g., [4]); later papers continued this trend (e.g., [43, 66]). In

addition to its efficiency, packet filtering is appealing because it does not require the cooperation of

users, nor does it require any special action on their part like some proxies require (See Section 3.2).

Packet filters use one or more of the following pieces of information to make their decision on

whether or not to forward the packet: source address; destination address; options in the network

header; transport-level protocol (i.e., TCP, UDP, ICMP, etc.); flags in the transport header; options

in the transport header; source port or equivalent if the protocol has such a construct; destination

port or equivalent if the protocol has such a construct; the interface on which the packet was

received or will be sent; and whether the packet is inbound or outbound.

Although packet filtering is fast, it has some drawbacks, most importantly the difficulty of

writing correct filters. For example, Chapman compares packet filter languages to assembly

language [12]. In 1995, Molitor proposed an improved commercial filter language [51].

A second drawback is that packet filtering cannot identify which user is causing which network

traffic. It can inspect the IP address of the host from which the traffic originates, but a host is not

identical to a user. If an organization with a packet-filtering firewall is trying to limit the services

some users can access, it must either implement an additional, separate protocol for authentication

(see Section 3.2 for one example of how this might be done) or use the IP address of the user’s

primary machine as a weak replacement for true user authentication.

Also, because IP addresses can be spoofed, using them for authentication can lead to other

problems. If the router is running a properly configured filter, remote attackers should not be able to

spoof local addresses, but they could spoof other remote addresses. Local machines can spoof other

10

local machines easily. In spite of these problems, many organizations still use IP addresses or DNS

names for access control.

With packet filters, the local machine directly initiates the connection to the remote machine.

A result is that the entire internal network is potentially reachable from external connections;

otherwise the reply packets from the remote host would not be delivered properly. As a

consequence, hostile remote computers can potentially exploit weaknesses in the protocol

implementation of the local computer (e.g., [61]).

Protocols such as FTP are difficult for packet filters. FTP uses a control channel opened from

the client to the server for commands. However, when getting a file, one method of using FTP

(active FTP) has the server open a connection back to the client, contrary to the communication

patters in other client-server protocols. FTP’s lack of encryption protecting user authentication data

has led to reduced usage, and eventually it may no longer be used.

3.1.1 Packet Filtering with State

Originally, packet filters ignored the state of a connection. This means that a remote host could

send in packets which appeared to be part of an established TCP connection (with the TCP ACK

flag set), but which in reality were not. Attacks against bugs in the TCP/IP protocol stack (e.g., [61])

can pass through the packet filtering firewalls which do not keep state by claiming to be part of an

established TCP session. Some network mapping software (e.g., [24]) can map the inside network

as if the firewall did not even exist.

The solution to this problem is to record the state of a connection, a property referred to

variously as stateful firewalls, adaptive firewalling and packet inspection. In other words, the packet

filter records both the network level and the transport level data. For example, a router can monitor

the initial TCP packets with the SYN flag set and allow the return packets only until the FIN packet

is sent and acknowledged. A similar pseudo-state can be kept for most UDP (e.g., DNS, NTP) and

11

some ICMP communication (e.g., ping)—a request sent out opens a hole for the reply, but only for a

short time. In 1992, Chapman was one of the first to point out the problem of the stateless packet

filtering firewalls [12]. The first peer-reviewed paper to describe adding state to packet filters was by

Julkunen and Chow in 1998, which describes a dynamic packet filter for Linux [37]. Today, all

major packet filtering firewalls are capable of using connection state.

3.1.2 Improving Packet Filter Specification

Firewalls were originally built and configured by experts. However, firewalls are now

commodity products which are sold with the intent that nearly anyone can be responsible for their

network’s security. Typically a graphical user interface (GUI) is used to configure packet filtering

rules. Unfortunately, this GUI requires the user to understand the complexities of packet filters,

complexities originally pointed out by Chapman in 1992 [12]. In many cases, the only advance

since then is the GUI. The prevalence of transparent proxies only increases the complexity of the

administrator’s task because he or she must understand the advantages and drawbacks of using

proxies compared to packet filtering.

Some researchers have therefore developed higher-level languages for specifying packet filters.

Specific examples include using binary decision diagrams (BDDs) to specify the policy, a compiler

for a higher-level language that produces packet-filtering rules, a LISP-like language describing

policy, and the Common Open Policy Service (COPS) protocol standard.

In 2000, Hazelhurst proposed BDDs for visualizing router rule sets [31]. Since BDDs

represent boolean expressions, they are ideal for representing the block/pass rules which occur in

packet filters. BDDs also make automated analysis of packet filter rules easier, as well as providing

better performance than the table lookups used in many routers.

The filter language compiler,flc [58], allows the use of the C preprocessor, specification of a

default block or pass policy for various directions of traffic flow, and provides a simple if-then-else

12

facility. flc also generates rules for several different packet filters (IPF,ipfw, ipfwadm, ipfirewall,

Cisco extended access lists, andscreend).

Guttman described a LISP-like language for expressing access control policies for networks

where more than one firewall router is used to enforce the policy [28]. The language is then used to

compute a set of packet filters which will properly implement the policy. He also describes an

algorithm for comparing existing filters to the policy to identify any policy breaches. However, the

automatically generated filters are not expressed in the language of any router; the network

administrator must build them manually from the LISP-like output.

The Internet standards RFC2748, RFC3060, and RFC3084 describe the Common Open Policy

Service (COPS) protocol. This protocol is used between a policy server (Policy Decision Point or

PDP) and its clients (Policy Enforcement Points or PEPs). The basic idea is that the policy is

specified at a different location from the firewall (a PEP), and the policy server ensures that the

various policy enforcers have and use the correct policy. The policy may relate to Quality of Service

(QoS), it may relate to security, or it may relate to some other part of network policy (e.g., IPsec);

the COPS protocol is extensible. The network is modeled as a finite state machine and a policy is

modeled as a collection of policy rules. These rules have a logical expression of conditions and a set

of actions. If the logical expression is true, then the actions are executed. These actions may cause a

state change in the network finite state machine. The policy rules can be prioritized, allowing

conflict resolution when two or more rules match but specify conflicting actions. As these proposed

standards are adopted, they will likely have a significant impact on how firewalls are constructed.

Stone et al. survey policy languages through 2000 and describe a new approach to policy

specification [64]. In addition to security concerns, their approach also takes into account Quality of

Service (QoS). In specifying policies, they note that some policies are static, i.e., for security

reasons, all access to certain network addresses are prohibited. Other policies are dynamic, i.e., if

the available bandwidth is too low, streaming video is no longer allowed. Finally, different users

13

may receive different levels of service (e.g., customers in the company web store have priority over

employees browsing the web). Their policy language is called the Path-Based Policy Language

(PPL), and it corrects some of the deficiencies in the other policy languages.

Damianou et al. describe a policy language called Ponder [19]. Ponder is a declarative,

object-oriented language, which uses its structures to represent policies. Constraints on a policy can

also be represented in Ponder. Although Ponder appears to be a rich and expressive language for

expressing policies, there is not yet an automated policy implementation path.

Bartal et al. describefirmato[5]. firmatohas an underlying entity-relationship model which

specifies the global security policy, a language in which to represent the model, a compiler which

translates the model into firewall rules, and a tool which displays a graphical view of the result to

help the user visualize the model. A module for use withfirmato is the firewall analysis engine,

Fang (Firewall ANalysis enGine) by Mayer et al. [48]. Fang reads the firewall configurations and

discovers what policy is described. The network administrator can then verify that the actual policy

on various routers matches the desired policy. For example, the network administrator can ask

questions such as “From which machines can our DMZ be reached, and with which services?” Fang

builds a representation of the policy; it is not an active testing program. This difference allows Fang

to test both the case in which authorized packets succeed and the one in which unauthorized packets

are blocked. It also allows testing before the firewall is deployed; by contrast, active test tools

require the firewall to be up and running to test it. Also, active testing cannot test the network’s

vulnerability to spoofing attacks, whereas Fang can. Fang provides a GUI to collect queries and to

display the results.

A recent example of this family of firewall test and analysis tools is the Lumeta Firewall

Analyzer (LFA) [70]. LFA is a commercial product which extends Fang to synthesize its own

“interesting” queries based only on the firewall configuration. The result is a system that hides the

complexities of underlying router configurations, providing a much more comprehensible picture of

14

the resulting policy.

Other tools for analyzing packet filter rules and highlighting problems (in some cases with

proposed solutions) include those by: Hari et al. [30], Al-Shaer and Hamed [1].

3.2 Proxies

A proxy is a program that receives traffic destined for another computer. Proxies sometimes

require user authentication; they can verify that the user is allowed to connect to the destination, and

then connect to the destination service on behalf of the user. One example of a firewall architecture

which makes use of a proxy server is shown in Figure 4.

When a proxy is used, the connection to the remote machine comes from the machine running

the proxy instead of the original machine making the request. Because the proxy generates the

connection to the remote machine, it has no problems determining which connections are real and

which are spoofed; this is in contrast to stateless packet filtering firewalls (described in Section 3.1).

Proxies appear in firewalls primarily at the Transport and Application ISO network levels. In

the Internet, the transport level consists of only two protocols, TCP and UDP. This small number of

protocols makes writing a proxy easy—one proxy suffices for all protocols that use TCP. Contrast

this with the application-level proxies (covered below), where a separate proxy is required for each

service, e.g., Telnet, FTP, HTTP, SMTP, etc.

Transport-level proxies have the advantage that a machine outside of the firewall cannot send

packets through the firewall which claim to be a part of an established connection (some of the

packet filters described in Section 3.1 have this problem). Because the state of the TCP connection

is known by the firewall, only packets that are a legitimate part of a communication are allowed

inside the firewall.

Proxies at the application level provide the benefits of transport-level proxies, and additionally

they can enforce the proper application-level protocol and prevent the abuses of the protocol by

15

either client or server. The result is excellent security and auditing. Unfortunately, application

proxies are not without their drawbacks:

• The proxy must be designed for a specific protocol. New protocols are developed frequently,

requiring new proxies; if there is no proxy, there is no access.

• To use an application proxy, the client program must be changed to accommodate the proxy.

The client needs to understand the proxy’s authentication method and it must communicate

the actual packet destination to the proxy. Because source code is not publicly available for

some applications, in these cases the required changes can be made only by the application’s

vendor, a significant bottleneck.

• Each packet requires two trips through the complete network protocol stack which adversely

affects performance. This is in contrast to packet filtering, which handles packets at the

network layer.

One of the most common proxies is SOCKS, by Kolbas and Kolbas [38]. SOCKS simplifies

the changes needed to the source code of the client application—A SOCKS call replaces a normal

socket call, which results in all outbound traffic using the proxy. This approach is a clean solution,

and it works well if one has the source code for the relevant operating system utilities. Some

commercial applications (e.g., Netscape) were written to accommodate SOCKS. A system using

SOCKS and TCP connections is transparent to the user (assuming the proxy allows access to the

destination host). In 2000, Fung and Chang described an enhancement to SOCKS for UDP streams,

such as that used by RealNetworks’ RealPlayer [23].

Ranum and Avolio developed the Trusted Information Systems (TIS) Firewall Toolkit

(FWTK), a collection of proxies for building firewalls [3, 57]. This freely available toolkit provided

SMTP, the Network News Transport Protocol (NNTP), FTP and Telnet application proxies as well

as a generic circuit-level proxy. To improve security, the proxies used the UNIX system callchroot

16

to limit how much of the system is exposed; this way if a proxy were compromised, the rest of the

firewall would more likely remain trustworthy. The TIS FWTK had no proxies for UDP services;

instead, the firewall machine ran DNS and the Network Time Protocol (NTP). The internal machines

used the firewall for those services. When Trusted Information Systems and Network Associates,

Inc. (NAI) merged in February 1998, the TIS firewall became NAI’s Gauntlet Internet Firewall.

A limitation of proxies is that client software must be modified and/or the user must work

differently when using the proxy. Transparent proxies address this limitation. With a transparent

proxy the client sends packets to the destination as usual. When the packets reach the firewall,

access control checks and logging are performed as in a classical proxy system. The “magic” is

implemented by the firewall, which notes the destination address and port, opens up a connection to

it and then replies to the client, as if the proxy were the remote machine. This relaying can take

place at either the transport level or the application level. RFC 1919 compares classical proxies with

transparent proxies.

Transparent proxies are demanding because the firewall must operate both at the network and

application levels, affecting performance. One solution proposed by Spatscheck et al. [62] and

Maltz and Bhagwat [45] is that of “splicing.” In splicing, after the proxy verifies that

communication is allowed to proceed, the firewall converts to a network-level packet filtering

firewall for that communication. Splicing provides the extra control of proxies but maintains

performance closer to that of packet filters.

4 Firewalls at various ISO network levels

4.1 Physical layer

The physical layer of the network is usually covered by an organization’s physical

security—conventional locks, keys, and other forms of physical access control. Untrusted persons

17

must not have access the physical cables and other network hardware which make up the network.

Wireless communication, especially radio, introduces new complications. For example, radio

waves travel through most walls easily. This feature necessitates the use of encryption. Wired

Equivalent Privacy (WEP) was the first attempt at providing security on wireless links. However,

Borisov et. al [10] discovered a weakness in key management, with the result that after an attacker

had received a sufficient number of packets, she could see all traffic and inject fake packets. The

new standard is Wi-Fi Protected Access (WPA), which, as of this writing, has no known flaws.

4.2 Data link layer

At the data link layer, two types of firewall technology are used. Filtering based on the media

access control (MAC) layer address (in most cases, the MAC address is the 48-bit Ethernet address)

determines which machines are allowed to communicate with whom. Bridging firewalls are more

traditional firewalls, but with the advantage that they can be placed anywhere in a network.

4.2.1 Filtering on MAC address

The MAC address of a machine uniquely identifies it on the local network. Some switches and

firewalls are able to use this address to decide what communication to allow. This form of filtering

has three limitations:

1. The MAC address is not routed; therefore any filtering must occur at or before the first router.

2. Some Ethernet cards can have a MAC address programmed into them via software running on

the machine. Therefore, the MAC address must be verified at the connection to the network

for it to provide security.

3. A machine is not a person; determining who is actually operating the machine is not possible

with the MAC address.

18

4.2.2 Bridging firewalls

A bridge is a network device which works at the ISO data-link layer. Operating at this level, it

does not need access to routing information. A bridging firewall uses the information listed in

Section 3.1 to decide whether or not to block a packet. As a result, a bridging firewall can examine

data in several other levels of the Internet Protocol suite, including the network and transport layers.

Because a filtering bridge is still a filter, the disadvantages of packet filtering still apply to it.

What makes a bridging firewall different from a packet filtering router is that it can be placed

anywhere—it is transparent at the network level. It can be used to protect a single machine or a

small collection of machines that would not normally warrant the separate network required when

using a router. As it does not need its own IP address, the bridge itself can be immune to any attack

which makes use of IP (or any of the protocols on top of IP). And, no configuration changes are

needed in the protected hosts when the firewall is installed. Installation times can be minimal (for

example, Limoncelli claims three second install times [41]), so users are minimally disrupted when

the bridge is installed.

4.3 Network

At the network level, addresses indicate routing information, and hosts can be grouped together

into networks. These differences from the data link layer provide important filtering options. An

additional firewall feature at this level is Network Address Translation (NAT), in which an address

on one side of the router is changed to a different one on the other side. In addition, multicast

protocols—sending packets to a collection of hosts—operate at this level. Multicast presents a new

set of problems: the sender does not necessarily know the identities of all the participants in the

session And this is also true for the recipients who do not know in advance all the possible people

who might be sending to them.

19

4.4 Network- and host-based filtering

Sometimes, all machines attached to a network can be assigned a similar trust level; for

example, consider a DMZ network as in Figure 2 or 3. In this case, packet filtering rules can be

developed which enforce the trust (or lack thereof). Two problems must be addressed:

1. IP version 4 does not contain authentication (unless IPsec is in use, which is rare for

non-Virtual Private Network (VPN) communication), and it is not required in IP version 6.

Many programs exist which can “spoof” another host—they put packets on the network

claiming to have originated with the spoofed host. Any IP-based authentication faces the

problem of not knowing that the correct host generated the packets. Blocking spoofed packets

generated on aremotenetwork is easy with packet filters—add a rule that says any packet

with a source address cannot arrive on a network interface attached to any other network.

However, preventing one machine on thelocal network from impersonating another is more

difficult; a firewall which is not on the offending machine cannot help.

2. IP has a feature known as “source routing,” where the source indicates the routing the packet

should take (instead of allowing the routing algorithms on the intervening routers to

determine the route). Return packets take the reverse route to return. The specified source

route may be bogus, or it may be valid and allow a spoofed IP address to communicate with a

remote machine. The result is that most firewalls block all source routed packets.

4.4.1 Multicast

On the Internet, multicast is often used for various forms of multimedia. In contrast with

traditional unicast communication, in multicast the sender does not necessarily know the identities

of the recipients, and recipients who do not know in advance who might be sending data to them.

This difference makes proxies such as SOCKS difficult to implement unless they change the

20

multicast into a collection of unicasts, a change that defeats the benefits of multicast—with

multicast, once one client inside of the firewall has joined a group, others may join without needing

to authenticate. Additionally, the multicast routing protocol, the Internet Group Management

Protocol (IGMP), specifies only multicast groups and not UDP ports; in a default configuration, a

multicast source has access to the complete set of UDP ports on client machines. If a source has

access to all UDP ports, then it could potentially attack other services, (e.g. Microsoft networking)

which are unrelated to the service it is providing.

The classic paper on multicast and firewalls was published by Djahandari and Sterne [20]. In

this paper they describe an application proxy for the TIS Firewall Toolkit. The proxy has the

following features: it allows authentication and auditing; it prevents multicast traffic from reaching

hosts that did not request it; it allows the multicast traffic to be sent only to “safe” ports. The proxy

converts multicast traffic into unicast traffic. Unfortunately, this approach also means that it does not

scale well, as a collection ofN users all receiving the same multicast stream increases the traffic

inside the firewall by a factor ofN over what it would have been if multicast had been retained. On

the other hand, they do solve all of the security problems mentioned in the previous paragraph and

later in this subsection.

RFC 2588 suggests several possible solutions to the problem of multicast and firewalls. For

example, communication between external and internal machines could be tunneled through the

firewall using the UDP Multicast Tunneling Protocol (UMTP). This protocol was designed to

connect clients to the Multicast Backbone (the MBone), but would work for tunneling through

multicast-unaware firewalls.

RFC 2588 also mentions the possibility of dynamic firewall rules, and Oria describes in further

detail how they can be implemented [54]. A program runs on the router, which monitors multicast

session announcements. The program reads the announcements, and if the specified group and UDP

port are allowed by the policy, it generates the necessary rules permitting the data to pass through

21

the firewall. When a client informs the router that it wishes to join a multicast group, it sends an

IGMP join message to the router. The dynamically generated rules permit or deny this access. This

approach to multicast on the firewall assumes that session announcements can be trusted.

Unfortunately, this is not a valid assumption because they can be spoofed.

4.4.2 Network Address Translation

Because the Internet is short of IPv4 addresses, many people use Network Address Translation

(NAT) to gain more mileage out of a single IP address. When a router uses NAT, it changes the

source address of outbound packets to its own address (or one from a pool of addresses which it

controls). It chooses a local, unused port for the upper layer protocol (TCP or UDP), and stores in a

table the association between the new address and port and the real sender’s address and port. When

the reply arrives, it looks up the real destination in this table, rewrites the packet, and passes it to the

client. When the connection is finished (or after a timeout period for UDP packets), the entry is

removed from the table.

NAT provides a form of protection similar to that of proxies. In NAT, all connections originate

from the router performing the address translation. As a result, someone outside the local network

cannot gain access to the protected local machines unless the proper entry exists in the table on the

router. The network administrator can manually install such an entry, causing all traffic destined for

a specific port to be forwarded to a server for that service (in effect, providing an Internet-accessible

service on an inside machine.1).

RFC 2663 notes some limitations of NAT. For example, NAT may prevent IPsec from working

correctly. One feature of IPsec is the ability to ensure that a packet is not modified in transit.

1Setting up such an entry is usually a bad idea from a security standpoint. Maintaining a server inside a firewall is

risky because if it is compromised, the attacker then has access inside the network, which as noted in Section 2 is likely

to be insecure.

22

However, one of the purposes of NAT is to modify packets—the source address and possibly the

source port must be modified for NAT to work. DNS problems can also occur. A machine behind a

router using NAT has a name and an IP address. However, most networks using NAT also use

RFC1918 private IP addresses, which are not globally unique. Therefore, DNS inside the network is

not meaningful outside.

4.5 Transport

When they can be used, transport-level proxies (from Section 3.2) work well. Since a

transport-level proxy initiates the connection, it cannot be spoofed by a packet claiming to be part of

an established communication. A problem analogous to the authentication problem of the data link

and network layers exists here: one cannot guarantee that the expected application is running on its

“well known” port. The solution to this problem lies in using an application-level proxy.

Note that packet filtering is faster than using proxies, so performance considerations may

dictate which to use.

4.6 Presentation

Little exists in the Internet at the Presentation layer, and even less exists in terms of firewalls.

The Common Object Request Broker (CORBA) allows applications written in one language to

make requests of objects possibly written in different languages or running on a different machine.

CORBAgate by Dotti and Rees [21] is a presentation-level proxy. When a request is made to an

object which is on the other side of the firewall, the proxy transparently changes the references. The

result is that objects on either side of the firewall end up referring to an object on the firewall.

23

4.7 Application

If the performance needs can be met, application-level proxies offer the best security. They can:

• Avoid being fooled into accepting spoofed packets.

• Ensure that both sides follow the expected application-level protocol.

• Limit the communication to an approved subset of the application-level protocol.

• Authenticate users and limit their communication according to their authorization.

• Monitor traffic for known problems, such as worms in email or hostile web server attacks

against vulnerable clients.

With the advent of transparent proxies, network administrators can achieve most of these benefits

without the awareness or cooperation of the users. The primary drawbacks were described above in

Section 3.2—performance concerns and each protocol requires a separate proxy, and the

development of proxies lags the development of new protocols.

5 Other approaches

Although filtering and proxies are the most common approaches to firewalls, they are not the

only ones. Researchers have experimented with dynamic and/or distributed firewalls. Because

attackers abuse protocol specifications, protocol normalization can also be beneficial. Since some

communication is known to be hazardous, signature-based firewalls might help improve security

against already-known attacks. Transient addressing provides the security benefits of network

address translation to a single machine. This section will discuss all of these approaches in more

depth.

24

5.1 Distributed Firewalls

There are several limitations to the firewall technology that we have presented so far. One

common assumption is that all the hosts inside a firewall are trustworthy. This assumption is not

always valid—for example, see Section 8.1. A related problem is that firewalls are unaware of

internal traffic which violates the security policy. Because firewalls are typically centralized in one

location, they can become performance bottlenecks and provide a single point of failure. A further

limitation of conventional firewalls arises because in some cases the local machines know context

that is not available to the firewall. For example, a file transfer may be allowed or denied based on

what file is being transferred and by whom. The firewall does not have this local, contextual

knowledge.

One solution to these problems, proposed by Bellovin [8], is a distributed firewall. This was

implemented by Ioannidis et al. in 2000 [35], and by Markham and Payne in 2001 [46]. In this

firewall, the network administrator has a single policy specification, loaded onto all machines. Each

host runs its own local firewall implementing the policy. Machines are identified by cryptographic

certificates, a stronger form of authentication than IP addresses. With a distributed firewall, the

common concept of a DMZ or screened network, where servers accessible to the outside world are

located, is no longer necessary (for examples of a DMZ or screened network, see Figures 3 or 2).

Hwang and Gangadharan [33, 25] propose using firewalls on all devices attached to the

protected network, where the firewalls can be combined with an intrusion detection system (IDS).

When the IDS detects an anomalous event, it modifies the firewall to react to the threat. Lower

overhead can be achieved with this approach than that reported for the distributed firewall developed

by Ioannidis [35].

Distributed firewalls have a different set of problems from centralized ones. The most

significant is that a distributed firewall relies on its users (with physical access to the machine) not

to override or replace the policy. Additionally, if the firewall is running as a part of the operating

25

system, then the operating system must protect the firewall software. However, the local firewall is

protecting the operating system, creating a circular set of dependencies. Markham and Payne

propose implementing the distributed firewall on a programmable network interface card (NIC) to

reduce reliance on the operating system for protection [46].

Around the same time that Bellovin proposed the distributed firewall, Ganger and Nagle also

proposed a distributed approach to security [26], in which each device is responsible for its part of

the security policy. Ganger and Nagle argue that if each device were more secure, then an attacker

who succeeds in passing the outer defenses (the firewall) would not find vulnerable targets inside.

They propose installing security devices on many parts of a network, including NICs, storage

devices, display devices, routers, and switches. The idea is that the devices would dynamically

adjust their approach to security based on the overall network defense level. As with Bellovin’s

proposal, programmable NICs are an important part of the overall strategy.

5.2 Dynamic firewalls

Dynamic firewalls change their rules depending on the traffic passing through them. The

simplest approach is to just block traffic deemed as bad. However, this approach leaves one open to

attacks where an attacker spoofs an attack from an important site (e.g., google), causing the

important site to get blocked. Better systems do more than just block, e.g. throttle traffic. e.g. [32].

Others that can be dynamic include OpenBSD’spf, Linux iptables, and some commercial products.

5.3 Normalization

Attackers often abuse protocol specifications, e.g., by sending overlapping IP fragments or

out-of-order TCP byte sequences. Handley et al. stressed that a firewall is a good location for

enforcing tight interpretation of a protocol [29]. Besides protecting the computers behind the

26

firewall from attacks based on protocol abuses, this so-called “normalization” also makes

signature-based intrusion detection systems more reliable because they see a consistent data stream.

Handley et al. provide a list of possible normalizations, ranging from those guaranteed to be safe to

others that are potentially too strict in their interpretation of the standard. They were not the first to

suggest normalization, however. Malan et al. describe “transport scrubbing” [44], and more recently

the idea is elaborated in [69]. At about the same time, Strother [65] proposed a similar idea. Her

solution involved different rings of trust, in which a network packet must pass through one ring

before proceeding to the next. Many of her rings achieve the same effect as normalization.

5.4 Signature-based Firewalls

Malan et al. discuss “application scrubbing” [44]. In this approach, a user-level program is

established as a transparent proxy (see Section 3.2) which monitors the data stream for strings

known to be hazardous (and presumably to prevent these strings from reaching the client). Watson

et al. refer to the same concept as a “fingerprint scrubber” [69].

Snort[59] is a common intrusion detection system.Hogwash[39] is a firewall that blocks

packets matching thesnort rules. It runs on a bridging firewall (Section 4.2.2) and the authors claim

it can handle network speeds of up to 100Mbps on hardware which is not state-of-the-art.

Commercial products such as web and email anti-virus and anti-spam often make use of

signatures. The advantage is high accuracy on known attacks. The disadvantage is that they do not

prevent attacks which are not in their database of signatures.

5.5 Transient Addressing

Many protocols, such as FTP, RealAudio, and H.323 (a protocol used for programs such as

Microsoft’s NetMeeting), open secondary channels for additional communication. These additional

27

channels are a problem for firewalls unless the firewall makes use of a stateful proxy. Gleitz and

Bellovin propose a solution to this problem by taking advantage of version 6 of the Internet Protocol

(IPv6), which has 128 bits of address space [27]. This is large enough for each host to have multiple

addresses. A client initiating a connection to a FTP server uses an address which includes the

process group ID of the FTP client process. The firewall sees a connection from a specific IPv6

address going to a FTP server at a remote site, and then allows all communication from the server

back to the client’s address. On the client side, this address is only used for the FTP process;

connections from the FTP server to other ports on the client will not be accepted, because only the

FTP client is using that specific address.

6 Firewall Testing

Since no two organizations communications needs and patterns are identical, few if any will

have identical firewalls. This leads to the problem of determining whether or not the firewall is

correctly enforcing the policy. Firewall testing was originally an ad-hoc exercise, the thoroughness

being determined by the skill of the person running the tests. A second phase of testing

methodology included security scanners such as the Security Administrator Tool for Analyzing

Networks (SATAN) and the Internet Security Systems (ISS) Internet scanner. These scanners

provided the basis for the National Computer Security Association (NCSA) certification [68] for a

period of time. Vigna extended this approach by defining a formal model of a network’s topology

[68]. His model can also represent the TCP/IP protocol stack up through the transport level. Using

this model, he was able to generate logical statements describing the requirements for the firewall.

Given these requirements, he then generated a series of locations for probes and packets to attempt

to send when testing the real firewall. From a formal standpoint, this work is promising, but it fails

to address the common problem of how to develop a correct formal description. Producing

28

complete formal descriptions for realistic networks represents a significant amount of work and is

difficult to do correctly. Additionally, the test generator must have a complete list of vulnerabilities

for which to generate tests.

Marcus Ranum took a different approach to firewall testing in [56]; he notes that firewalls are

(or at least should be) different for different organizations. After a firewall is deployed, an expert

can study the policy specification for the firewall and decide which tests will verify that the firewall

properly implements the policy, using a top-down approach. He emphasizes the importance of

testing both the security of the firewall itself (that the firewall is secure from attack) and the

correctness of the policy implementation. Unfortunately, such testing is both expensive and

time-consuming.

Some of the tools for firewall policy specification (Section 3.1.2 on page 12) also provide

testing or guidance for testing.

7 What firewalls do not protect against

No firewall provides perfect security. Several problems exist which are not addressed by the

current generation of firewalls. In the event that a firewall does try to provide protection for the

problems discussed in this section, either it is not in widespread use or it has problems with the

protection it provides.

7.1 Data Which Passes Through the Firewall

A firewall is probably best thought of as a permeable membrane. That is, it is only useful if it

allows some traffic to pass through it (if not, then the network could be physically isolated from the

outside world and the firewall not needed). Unfortunately, any traffic passing though the firewall is a

potential avenue of attack. For example, most firewalls have some provision for email, but email is a

29

common method of attack; a few of the many email attacks include the “I Love You” letter, the

“Sobig” worm, VBS/OnTheFly (Anna Kournikova) worm, etc. The serious problem of email-based

attacks has resulted in demand for some part of the firewall to check email for hostile code. Open

source products such as AMaViS and commercial email virus scanners have responded to this

problem. However, they are only as good as the signatures for which they scan; novel attacks pass

through without a problem. Additionally, SPAM is turning into a denial-of-service attack due to the

volume, causing anti-spam products to be merged into anti-virus email checking systems.

If web traffic is allowed through the firewall, then network administrators must cope with

possibility of malicious web sites. With scripting languages such as Java, JavaScript, and ActiveX

controls, malicious web administrators can read arbitrary files on client machines (e.g., when a bug

in Netscape allowed Java applets to read protected resources), and execute arbitrary code on the

client (e.g., when an ActiveX Control allowed local files to be executed or when a weakness in the

Java bytecode verifier allowed applets to do whatever they wanted). ActiveX controls are of

particular concern, because they do not run in any form of “sandbox” the way Java applets do [6].

ActiveX controls can be digitally signed, and if properly used, can be used to authenticate the

author, if not the author’s intentions.

In 1997, Martin et al. describe some attacks written in Java [47]. They advocate the draconian

solution of blocking all applets, on the grounds that it cannot be determined which Java applets are

dangerous. They suggest the following methods of blocking Java applets at the firewall:

1. Using a proxy to rewrite<applet> tags. This requires that the proxy be smart enough to

rewrite only the tags in HTML files and not if they appear in other file types, such as image

files. This requires that the proxy parse the HTML documents in the same manner as the

browser.

2. Java class files always begin with four byte hex signature CAFE BABE. A firewall could

block all files that begin with this sequence. A possibility of false positives exists with this

30

scheme, but Martin et al. believe that this problem is less likely to occur than the<applet>

tag appearing in non-HTML files.

3. Block all files whose names end in.class . This solution is weak because Java classes can

come in files with other extensions, for example, packing class files in a.zip file is common.

Their suggestion is to implement all three of these, and they write a proxy which does everything

except look inside of.zip files.

7.2 Servers on the DMZ

Because the networks inside of a firewall are often not secure, servers which must be accessible

from the Internet (e.g., web and mail servers) are often placed on a screened network, called the

DMZ (for demilitarized zone; for a picture of one way a DMZ may be constructed, see see Figures 3

or 2). Machines on the DMZ are not allowed to make connections to machines on the inside of the

firewall, but machines on the insideareallowed to make connections to the DMZ machines. The

reason for this architecture is that if a server on the DMZ is compromised, the attacker cannot

directly attack the other machines inside. Because a server must be accessible to be of use, current

firewalls other than signature-based ones (Section 5.4) can do little against attacks through the

services offered. Examples of attacks on servers include worms such as “Code Red” and “Nimda”.

7.3 Insider Attacks

In spite of the fact that early firewalls such as the DEC SEAL were initially set up to prevent

information leaks, they cannot protect against insiders intent on getting information out of an

organization. Consider a hostile employee with access to a DVD burner. The resulting DVD will

not be traveling through the firewall, so the firewall cannot prevent this data loss. Muffett also points

out that inside a firewall, security tends to decrease over time unless the internal machines are

31

continually updated [53]. Therefore, a hostile insider can generally penetrate other internal

machines, and since these attacks do not go through the firewall, it cannot stop them. To reduce this

threat, some organizations have set up internal firewalls.

8 Future Challenges for Firewalls

All of the topics discussed in the prior section pose serious challenges for firewalls. In

addition, two emerging technologies will further complicate the job of a firewall, Virtual Private

Networks (VPNs) and peer-to-peer networking.

8.1 VPNs

Because firewalls are deployed at the network perimeter, if the network perimeter is expanded

the firewall must somehow protect this expanded territory. VPNs provide an example of how this

can happen. A laptop being used by a traveling employee in an Internet cafe or a home machine

which is connected to an ISP via a DSL line or cable modem must be inside the firewall. However,

if the laptop or home machine’s security is breached, the entire internal network becomes available

to the attackers.

Remote access problems are first mentioned in [3]. Due to the fact that VPNs had not yet been

invented, it is easy to understand why Avolio and Ranum failed to discuss the problem of a remote

perimeter which includes hosts always-connected to the Internet (via DSL or cable modems) and

which are also allowed inside through a VPN tunnel.

8.2 Peer-to-peer Networking

The music sharing system Napster was the most famous example of peer-to-peer networking.

However, several other peer-to-peer systems exist as well, including Gnutella and AIMster (file

32

sharing over AOL Instant Messenger). When not used for music sharing, peer-to-peer file sharing is

used to support collaboration between distant colleagues. However, as Bellovin points out [9], these

systems raise serious security concerns. These include the possibility of using Gnutella for attacks,

buggy servents (server+client programs), and the problems of web and email-based content in yet

another form. Current firewalls are unable to provide any protection against these types of attacks

beyond simply blocking the peer-to-peer networking.

8.3 HTTP as a “universal transport protocol”

The development of firewalls and the filtering that usually occurs at an organization’s perimeter

has affected the design of new protocols. Many new protocols are developed on top of HTTP, since

it is often allowed through firewalls. In some cases, this piggy backing is a reasonable use of HTTP.

In other cases, such as the Simple Object Access Protocol (SOAP), HTTP is used as a remote

procedure call protocol. A good proxy is required to determine what HTTP is allowed with whom.

9 Conclusion

The need for firewalls has led to their ubiquity. Nearly every organization connected to the

Internet has installed some sort of firewall. The result of this is that most organizations have some

level of protection against threats from the outside. Attackers still probe for vulnerabilities that are

likely to only apply to machines inside of the firewall. They also target servers, especially web

servers. However, these attackers are also now targeting home users (especially those with full-time

Internet connections) who are less likely to be well protected. These attacks are two-fold: 1) to take

advantage of the lower security awareness of the home user, and 2) to get through a VPN

connection to the inside of an organization.

Because machines inside a firewall are often vulnerable to both attackers who breach the

33

firewall as well as hostile insiders, we will likely see increased use of the distributed firewall

architecture. The beginnings of a simple form of distributed firewalls are already here, with personal

firewalls being installed on individual machines. However, many organizations will require that

these individual firewalls respond to configuration directives from a central policy server. This

architecture will simply serve as the next level in an arms race, as the central server and the

protocol(s) it uses become special targets for attackers.

Firewalls and the restrictions they commonly impose have affected how application-level

protocols have evolved. Because traffic initiated by an internal machine is often not as tightly

controlled, newer protocols typically begin with the client contacting the server; not the reverse as

active FTP did. The restrictions imposed by firewalls have also affected the attacks that are

developed. The rise of email-based attacks is one example of this change.

An even more interesting development is the expansion of HTTP and port 80 for new services.

File sharing and remote procedure calls can now be accomplished using HTTP. This overloading of

HTTP results in new security concerns, and as a result, more organizations are beginning to use a

(possibly transparent) web proxy so they can control the remote services used by the protected

machines. The future is likely to see more of this co-evolution between protocol developers and

firewall designers until the protocol designers consider security when the protocol is first developed.

Even then, firewalls will still be needed to cope with bugs in the implementations of these protocols.

References

[1] E.S. Al-Shaer and H.H. Hamed. Firewall policy advisor for anomaly discovery and rule

editing. 8th International Symposium on Integrated Network Management, pages 17–30, 2003.

[2] Frederic Avolio. Firewalls and Internet security, the second hundred (Internet) years.The

Internet Protocol Journal, 2(2):24–32, June 1999.

34

http://www.cisco.com/warp/public/759/ipj_2-2/ipj_2-2_fis1.html

Accessed 2002 Feb 20.

[3] Frederick M. Avolio and Marcus J. Ranum. A network perimeter with secure external access.

In Internet Society Symposium on Network and Distributed Systems Security, 3-4 Feb. 1994,

San Diego, CA, USA, pages 109–119, Reston, VA, USA, February 1994. Internet Society.

http://www.ja.net/CERT/Avolio_and_Ranum/isoc94.ps Accessed Feb 20

2002.

[4] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L. Peterson, and Prasenjit Sarkar.

PATHFINDER: A pattern-based packet classifier. In1st Symposium on Operating Systems

Design and Implementation, 14-17 November 1994, Monterey, CA, USA, pages 115–123,

Berkeley, CA, November 1994. USENIX Association.

[5] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A novel firewall

management toolkit. In1999 IEEE Symposium on Security and Privacy, 9-12 May 1999,

Oakland, CA, USA, pages 17–31, Los Alamitos, CA, USA, 1999. IEEE.

http://www.wisdom.weizmann.ac.il/˜kobbi/papers/firmato.ps

Accessed 2002 Feb 20.

[6] S.M. Bellovin, C. Cohen, J. Havrilla, S. Herman, B. King, J. Lanza, L. Pesante, R. Pethia,

S. McAllister, G. Henault, R.T. Goodden, A. P. Peterson, S. Finnegan, K. Katano, R.M. Smith,

and R.A. Lowenthal. Results of the security in ActiveX workshop Pittsburgh, Pennsylvania

USA August 22-23, 2000. Technical report, CERT Coordination Center, Software Engineering

Institute, Carnegie Mellon University, Pittsburg, PA 15213, USA, December 2000.

http://www.cert.org/reports/activeX_report.pdf Accessed 2002 Feb 20.

35

http://www.cisco.com/warp/public/759/ipj_2-2/ipj_2-2_fis1.html
http://www.ja.net/CERT/Avolio_and_Ranum/isoc94.ps
http://www.wisdom.weizmann.ac.il/~kobbi/papers/firmato.ps
http://www.cert.org/reports/activeX_report.pdf

[7] Steven M. Bellovin. There be dragons. InUNIX Security Symposium III Proceedings, 14-16

Sept 1992, Baltimore, MD, USA, pages 1–16, Berkeley, CA, September 1992. USENIX

Association.http://www.research.att.com/˜smb/papers/dragon.pdf

Accessed 2002 Feb 20.

[8] Steven M. Bellovin. Distributed firewalls.;login:, 24(Security), November 1999.

http://www.usenix.org/publications/login/1999-11/features/

firewalls.html Accessed 2002 Feb 20.

[9] Steven M. Bellovin. Security aspects of Napster and Gnutella, June 2000. Invited talk at the

USENIX 2001 Annual Technical Conference, June 25-30, 2001.http:

//www.research.att.com/˜smb/talks/NapsterGnutella/index.htm

Accessed 2002 Feb 20.

[10] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile communications: The

insecurity of 802.11. InProceedings of the Seventh International Conference on Mobile

Computing and Networking July 16-21, 2001, Rome, Italy, 2001.

[11] R. Braden, D. Clark, S. Crocker, and C. Huitema. Report of IAB workshop on security in the

Internet architecture February 8-10, 1994, June 1994. RFC 1636.

ftp://ftp.isi.edu/in-notes/rfc1636.txt Accessed 2002 Feb 20.

[12] D. Brent Chapman. Network (in)security through IP packet filtering. InUNIX Security

Symposium III Proceedings, 14-16 Sept 1992, Baltimore, MD, USA, pages 63–76, Berkeley,

CA, September 1992. USENIX Association.

http://www.greatcircle.com/pkt_filtering.html Accessed 2002 Feb 20.

[13] B. Cheswick. An evening with Berferd in which a cracker is lured, endured, and studied. In

Winter 1992 USENIX Conference, 20-24 Jan 1992, San Francisco, CA, USA, pages 163–173,

36

http://www.research.att.com/~smb/papers/dragon.pdf
http://www.usenix.org/publications/login/1999-11/features/firewalls.html
http://www.usenix.org/publications/login/1999-11/features/firewalls.html
http://www.research.att.com/~smb/talks/NapsterGnutella/index.htm
http://www.research.att.com/~smb/talks/NapsterGnutella/index.htm
ftp://ftp.isi.edu/in-notes/rfc1636.txt
http://www.greatcircle.com/pkt_filtering.html

Berkeley, CA, January 1992. USENIX Association.

http://www.cheswick.com/ches/papers/berferd.ps Accessed 2002 Feb 20.

[14] William R. Cheswick. The design of a secure Internet gateway. InUSENIX 1990 Summer

Conference, Berkeley, CA, June 1990. USENIX Association.

http://www.cheswick.com/ches/papers/gateway.ps Accessed 2002 Feb 20.

[15] William R. Cheswick and Steven M. Bellovin.Firewalls and Internet Security: Repelling the

Wily Hacker. Addison-Wesley, One Jacob Way, Reading, MA, 01867, 1994.

[16] Computer Emergency Response Team (CERT). CERT incident note IN-2000-02 :

Exploitation of unprotected windows networking shares, April 2000.

http://www.cert.org/incident_notes/IN-2000-02.html .

[17] Computer Emergency Response Team (CERT). CERT incident note IN-2000-03 : 911 worm,

April 2000. http://www.cert.org/incident_notes/IN-2000-03.html .

[18] Computer Emergency Response Team (CERT). CERT incident note IN-2001-01 : Widespread

compromises via “ramen” toolkit, January 2001.

http://www.cert.org/incident_notes/IN-2001-01.html .

[19] N. Damianou, N. Dulay, E. Lapu, and M. Sloman. The ponder policy specification language.

In Policies for Distributed Systems and Networks. International Workshop, POLICY 2001.

Proceedings, 29-31 Jan. 2001, Bristol, UK, Berlin, Germany, 2001. Springer-Verlag.

http://www.doc.ic.ac.uk/˜mss/Papers/Ponder-Policy01V5.pdf

Accessed 2002 Feb 20.

[20] K. Djahandari and D. Sterne. An MBone proxy for an application gateway firewall. In

Proceedings of the 1997 Conference on Security and Privacy (S&P-97), pages 72–81, Los

Alamitos, May 4–7 1997. IEEE Press.

37

http://www.cheswick.com/ches/papers/berferd.ps
http://www.cheswick.com/ches/papers/gateway.ps
http://www.cert.org/incident_notes/IN-2000-02.html
http://www.cert.org/incident_notes/IN-2000-03.html
http://www.cert.org/incident_notes/IN-2001-01.html
http://www.doc.ic.ac.uk/~mss/Papers/Ponder-Policy01V5.pdf

[21] Paola Dotti and Owen Rees. Protecting the hosted application server. Technical Report

HPL-1999-54 990413, Hewlett-Packard Labs., Bristol, UK, 1999.

http://www.hpl.hp.com/techreports/1999/HPL-1999-54.pdf Accessed

2002 Feb 20.

[22] Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers: An analysis of the

Internet virus of November 1988. In1989 IEEE Computer Society Symposium on Security and

Privacy, pages 326–343, Los Alamitos, CA, USA, May 1989. IEEE Computer Society.

[23] King P. Fung and Rocky K. C. Chang. A transport-level proxy for secure multimedia streams.

IEEE Internet Computing, 4(6):57–67, November–December 2000.

[24] Fyodor. Nmap - free security scanner for network exploration and security audits, May 2004.

http://www.insecure.org/nmap/ Accessed 2004 June 8.

[25] Muralidaran Gangadharan and Kai Hwang. Intranet security with micro-firewalls and mobile

agents for proactive intrusion response. InProceedings of the International Conference on

Computer Networks and Mobile Computing, 2001, pages 325–332, Los Alamitos, CA, USA,

2001. IEEE Computer Society.

[26] Gregory R. Ganger and David F. Nagle. Enabling dynamic security management of networked

systems via device-embedded security. Technical Report CMU-CS-00-174, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3890, December 2000.

http:

//reports-archive.adm.cs.cmu.edu/anon/2000/CMU-CS-00-174.pdf

Accessed 2002 Feb 20.

[27] Peter M. Gleitz and Steven M. Bellovin. Transient addressing for related processes: Improved

firewalling by using IPV6 and multiple addresses per host. InProceedings of the 10th USENIX

38

http://www.hpl.hp.com/techreports/1999/HPL-1999-54.pdf
http://www.insecure.org/nmap/
http://reports-archive.adm.cs.cmu.edu/anon/2000/CMU-CS-00-174.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2000/CMU-CS-00-174.pdf

Security Symposium, pages 99–113, Berkleley, CA, USA, August 2001. USENIX Association.

http://www.usenix.org/publications/library/proceedings/sec01/

full_papers/gleitz/gleitz.pdf Accessed 20 Feb 2002.

[28] Joshua D. Guttman. Filtering postures: local enforcement for global policies. In1997 IEEE

Symposium on Security and Privacy, 4-7 May 1997, Oakland, CA, USA, pages 120–129, Los

Alamitos, CA, USA, 1997. IEEE Computer Society Press.http://www.mitre.org/

support/papers/filtering_postures/filtering_postures.pdf Accessed

2002 Feb 20.

[29] Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion detection: Evasion,

traffic normalization, and end-to-end protocol semantics. InConference Proceedings: 10th

USENIX Security Symposium, pages 115–131, Berkleley, CA, USA, August 2001. USENIX

Association.

http://www.aciri.org/vern/papers/norm-usenix-sec-01.pdf Accessed

2002 Feb 20.

[30] Hari Adiseshu Hari, Subhash Suri, and Guru M. Parulkar. Detecting and resolving packet filter

conflicts. InProceedings IEEE INFOCOM 2000. Conference on Computer Communications.

Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies,

pages 1203–1212, 2000.

[31] Scott Hazelhurst, Adi Attar, and Raymond Sinnappan. Algorithms for improving the

dependability of firewall and filter rule lists. InProceedings of the International Conference

on Dependable Systems and Networks (DSN 2000), pages 576–585, Los Alamitos, CA, USA,

June 2000. IEEE Computer Society. IEEE.

39

http://www.usenix.org/publications/library/proceedings/sec01/full_papers/gleitz/gleitz.pdf
http://www.usenix.org/publications/library/proceedings/sec01/full_papers/gleitz/gleitz.pdf
http://www.mitre.org/support/papers/ filtering_postures/filtering_postures.pdf
http://www.mitre.org/support/papers/ filtering_postures/filtering_postures.pdf
http://www.aciri.org/vern/papers/norm-usenix-sec-01.pdf

[32] R. Hunt and T. Verwoerd. Reactive firewalls - a new technique.Computer Communications,

26(12):1302–17, 21 July 2003.

[33] Kai Hwang and Muralidaran Gangadharan. Micro-firewalls for dynamic network security with

distributed intrusion detection. InIEEE International Symposium on Network Computing and

Applications, NCA 2001, pages 68–79, Los Alamitos, CA, USA, 2001. IEEE Computer

Society.

[34] Kenneth Ingham and Stephanie Forrest. A history and survey of network firewalls. Technical

Report 2002-37, University of New Mexico Computer Science Department, 2002.http:

//www.cs.unm.edu/colloq-bin/tech_reports.cgi?ID=TR-CS-2002-37 .

Accessed 29 December 2002. May be accepted for publication in the International Journal of

Information Security.

[35] Sotiris Ioannidis, Angelos D. Keromytis, Steven M. Bellovin, and Jonathan M. Smith.

Implementing a distributed firewall. InACM Conference on Computer and Communications

Security, pages 190–199, One Astor Plaza, 1515 Broadway, New York, New York

10036-5701, USA, 2000. Association for Computing Machinery.

http://www.cis.upenn.edu/˜angelos/Papers/df.ps.gz Accessed 2002 Feb

20.

[36] ISO/TC97/SC16. Reference model of open systems interconnection. Technical Report N. 227,

International Organization for Standardization, June 1979.

[37] H. Julkunen and C.E. Chow. Enhance network security with dynamic packet filter. In

K. Makki, I. Chalamrac, and N. Pissinou, editors,7th International Conference on Computer

Communications and Networks, 12-15 Oct. 1998, Lafayette, LA, USA, pages 268–275,

Piscataway, NJ, USA, 1998. IEEE.

40

http://www.cs.unm.edu/colloq-bin/tech_reports.cgi?ID=TR-CS-2002-37
http://www.cs.unm.edu/colloq-bin/tech_reports.cgi?ID=TR-CS-2002-37
http://www.cis.upenn.edu/~angelos/Papers/df.ps.gz

[38] Davis Koblas and Michelle R. Koblas. SOCKS. InUNIX Security Symposium III Proceedings,

14-16 Sept. 1992, Baltimore, MD, USA, pages 77–83, Berkeley, CA, September 1992.

USENIX Association.

[39] Jason Larsen. HogWash, November 2001.http://hogwash.sourceforge.net/

Accessed 2002 Feb 20.

[40] T. Lightoler. The gentleman and farmer’s architect. A new work. Containing a great variety of

... designs. Being correct plans and elevations of parsonage and farm houses, lodges for parks,

pinery, peach, hot and green houses, with the fire-wall, tan-pit, &c particularly described ...R.

Sayer, London, UK, 1764.

[41] Tom Limoncelli. Tricks you can do if your firewall is a bridge. In1st Conference on Network

Administration, 7-10 April 1999, Santa Clara, CA, USA, pages 47–55, Berkeley, CA, USA,

April 1999. USENIX Association.

http://www.bell-labs.com/user/tal/papers/ Accessed 2002 Feb 20.

[42] Steven W. Lodin and Christoph L. Schuba. Firewalls fend off invasions from the net.IEEE

Spectrum, 35(2):26–34, February 1998.

[43] Michael R. Lyu and Lorrien K.Y. Lau. Firewall security: Policies, testing and performance

evaluation. InProceedings of The Twenty-Fourth Annual International Computer Software and

Applications Conference, Los Alamitos, CA, USA, October 2000. IEEE Computer Society.

[44] G. Robert Malan, David Watson, Farnam Jahanian, and Paul Howell. Transport and

application protocol scrubbing. InIEEE INFOCOM 2000. Conference on Computer

Communications. Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies, 26-30 March 2000, Tel Aviv, Israel, pages 1381–1390, Piscataway,

NJ, USA, March 2000. IEEE Computer Society; IEEE Communications Society.

41

http://hogwash.sourceforge.net/
http://www.bell-labs.com/user/tal/papers/

[45] D. Maltz and P. Bhagwat. TCP splicing for application layer proxy performance. Technical

Report RC 21139, IBM, March 1998.http://domino.watson.ibm.com/library/

cyberdig.nsf/a3807c5b4823c53f85256561006324be/

88d1e552b09ffa65852565e6006616f1?OpenDocument Accessed 2002 Feb 20.

[46] T. Markham and C. Payne. Security at the network edge: a distributed firewall architecture. In

DARPA Information Survivability Conference and Exposition II. DISCEX’01, 12-14 June

2001, Anaheim, CA, USA, pages 279–286, Los Alamitos, CA, USA, 2001. IEEE Computer

Society.

[47] Jr. Martin, D.M., S. Rajagopalan, and A.D. Rubin. Blocking Java applets at the firewall. In

SNDSS ’97: Internet Society 1997 Symposium on Network and Distributed System Security,

10-11 Feb. 1997, San Diego, CA, USA, pages 16–26, Los Alamitos, CA, USA, February 1997.

IEEE Computer Society Press.

[48] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis engine. In

Proceedings of the 2000 IEEE Symposium on Security and Privacy (S&P 2000), pages

177–187, Los Alamitos, CA, USA, May 2000. IEEE Computer Society.

[49] Niall McKay. China: The great firewall, December 1998. Web publication:

http://www.wired.com/news/politics/0,1283,16545,00.html Accessed

2002 Feb 20.

[50] Jeffrey C. Mogul. Simple and flexible datagram access controls for Unix-based gateways. In

Proceedings of the USENIX Summer 1989 Conference, pages 203–222, Berkeley, CA, 1989.

USENIX Association.ftp://ftp.digital.com/pub/Digital/WRL/

research-reports/WRL-TR-89.4.ps.gz Accessed 2002 Feb 20.

42

http://domino.watson.ibm.com/library/cyberdig.nsf/a3807c5b4823c53f85256561006324be/88d1e552b09ffa65852565e6006616f1?OpenDocument
http://domino.watson.ibm.com/library/cyberdig.nsf/a3807c5b4823c53f85256561006324be/88d1e552b09ffa65852565e6006616f1?OpenDocument
http://domino.watson.ibm.com/library/cyberdig.nsf/a3807c5b4823c53f85256561006324be/88d1e552b09ffa65852565e6006616f1?OpenDocument
http://www.wired.com/news/politics/0,1283,16545,00.html
ftp://ftp.digital.com/pub/Digital/WRL/research-reports/WRL-TR-89.4.ps.gz
ftp://ftp.digital.com/pub/Digital/WRL/research-reports/WRL-TR-89.4.ps.gz

[51] Andrew Molitor. An architecture for advanced packet filtering. InProceedings of the Fifth

USENIX UNIX Security Symposium, pages 117–126, Berkeley, CA, USA, June 1995.

USENIX Association.http://www.usenix.org/publications/library/

proceedings/security95/full_papers/molitor.ps Accessed 2002 Feb 20.

[52] Alec Muffett. Proper care and feeding of firewalls. InProceedings of the UKERNA Computer

Security Workshop, Atlas Centre, Chilton, Didcot, Oxfordshire, OX11 0QS UK, November

1994. United Kingdom Education and Research Networking Association.

ftp://coast.cs.purdue.edu/pub/doc/firewalls/Muffett_Alec_

feeding_firewalls.ps.Z Accessed 2002 Feb 20.

[53] Alec Muffett. Wan-hacking withAutoHack- auditing securitybehindthe firewall. InThe Fifth

USENIX UNIX Security Symposium, pages 21–34, Berkeley, CA, June 1995. USENIX

Association.

[54] Loic Oria. Approaches to multicast over firewalls: an analysis. Technical Report

HPL-IRI-1999-004 990827, Hewlett-Packard Laboratories, August 1999.

http://www.hpl.hp.com/techreports/1999/HPL-IRI-1999-004.html

Accessed 2002 Feb 20.

[55] Marcus J. Ranum. A network firewall. InProceedings of the First World Conference on

System Administration and Security, 5401 Westbard Ave. Suite 1501, Bethesda, MD 20816,

1992. SANS Institute.

[56] Marcus J. Ranum. On the topic of firewall testing, 1995.

http://web.ranum.com/pubs/fwtest/index.htm Accessed 2002 Feb 20.

43

http://www.usenix.org/publications/library/proceedings/security95/full_papers/molitor.ps
http://www.usenix.org/publications/library/proceedings/security95/full_papers/molitor.ps
ftp://coast.cs.purdue.edu/pub/doc/firewalls/Muffett_Alec_feeding_firewalls.ps.Z
ftp://coast.cs.purdue.edu/pub/doc/firewalls/Muffett_Alec_feeding_firewalls.ps.Z
http://www.hpl.hp.com/techreports/1999/HPL-IRI-1999-004.html
http://web.ranum.com/pubs/fwtest/index.htm

[57] Marcus J. Ranum and Frederick M. Avolio. A toolkit and methods for Internet firewalls. In

Conference Proceedings: USENIX Summer 1994 Technical Conference, pages 37–44,

Berkeley, CA, 1994. USENIX Association.

[58] Darren Reed. Filter language compiler, 19?? Undated web page.

http://coombs.anu.edu.au/ipfilter/flc.html Accessed 2002 Feb 20.

[59] Martin Roesch. Snort—lightweight intrusion detection for networks. In13th Systems

Administration Conference—LISA ’99, pages 229–238, 1999.

http://www.usenix.org/events/lisa99/roesch.html Accessed 30 June

2002.

[60] Bruce Schneier.Secrets and Lies: Digital Security in a Networked World, pages 188–193.

John Wiley & Sons, New York, NY, 2000.

[61] Securityfocus.com. Multiple vendor “out of band” data (winnuke.c) DoS vulnerability, May

1997. Vulnerability database.http://www.securityfocus.com/bid/2010

Accessed 2002 Feb 20.

[62] Oliver Spatscheck, Jorgen S. Hansen, John H. Hartman, and Larry L. Peterson. Optimizing

TCP forwarder performance.IEEE/ACM Transactions on Networking, 8(2):146–157, 2000.

http://www.cs.arizona.edu/scout/Papers/TR98-01.ps Accessed 2002 Feb

20.

[63] Cliff Stoll. Stalking the wily hacker.Communications of the ACM, 31(5):484–497, May, 1988.

[64] Gary B. Stone, Bert Lundy, and Geoffrey G. Xie. Network policy languages: A survey and a

new approach.IEEE Network, 15(1):10–21, January-February 2001.

44

http://coombs.anu.edu.au/ipfilter/flc.html
http://www.usenix.org/events/lisa99/roesch.html
http://www.securityfocus.com/bid/2010
http://www.cs.arizona.edu/scout/Papers/TR98-01.ps

[65] Elizabeth Strother. Denial of service protection: the nozzle. InAnnual Computer Security

Applications Conference, 11-15 Dec. 2000, New Orleans, LA, USA, pages 32–41, Los

Alamitos, CA, USA, December 2000. IEEE Computer Society.

http://www.acsac.org/2000/papers/41.pdf Accessed 2002 Feb 20.

[66] Subhash Suri and George Varghese. Packet filtering in high speed networks. InTenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA’99), pages 969–970, 3600 University

City Science Center, Philadelphia, PA 19104-2688, 1999. SIAM.

http://siesta.cs.wustl.edu/˜suri/psdir/soda_filter.ps Accessed

2002 Feb 20.

[67] The RFC Editor. Request for comments (RFC) frequently asked questions, April 2001.

http://www.rfc-editor.org/rfcfaq.html Accessed 2002 Feb 20.

[68] Giovanni Vigna. A formal model for firewall testing. Unpublished paper.

http://citeseer.nj.nec.com/279361.html Accessed 2002 Feb 20., 1997.

[69] D. Watson, M. Smart, G.R. Malan, and F. Jahanian. Protocol scrubbing: network security

through transparent flow modification. InDARPA Information Survivability Conference &

Exposition II, 2001. DISCEX ’01. Proceedings, volume 2, pages 108–118, Los Alamitos, CA,

USA, 2001. IEEE Computer Society.

[70] Avishai Wool. Architecting the Lumeta firewall analyzer. InConference Proceedings: 10th

USENIX Security Symposium, pages 85–97, Berkleley, CA, USA, August 2001. USENIX

Association.

http://www.usenix.org/events/sec01/full_papers/wool/wool.pdf

Accessed 2002 Feb 20.

45

http://www.acsac.org/2000/papers/41.pdf
http://siesta.cs.wustl.edu/~suri/psdir/soda_filter.ps
http://www.rfc-editor.org/rfcfaq.html
http://citeseer.nj.nec.com/279361.html
http://www.usenix.org/events/sec01/full_papers/wool/wool.pdf

[71] Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman.Building Internet Firewalls, 2nd

Edition. O’Reilly & Associates, 101 Morris St, Sebastopol, CA 95472 USA, 2000.

46

List of Figures

1 A firewall at the perimeter of an organization’s network. The inside network may be
as simple as a few machines, or may consist of several divisions located in geograph-
ically distant locations connected by telecommunication lines. 48

2 A firewall with a DMZ on a third network attached to the firewall router. Some
commercial products are configured this way, as well as custom firewalls. 49

3 A screened network as a DMZ. The “firewall” is enclosed by the dashed line. 50
4 A network using a proxy server. Some commercial products combine all of the ma-

chines shown in the dashed lines into one to reduce the cost. 51

47

Outside
Network

Inside
NetworkFirewall

Figure 1: A firewall at the perimeter of an organization’s network. The inside network may be
as simple as a few machines, or may consist of several divisions located in geographically distant
locations connected by telecommunication lines.

48

DMZ
Network

Outside
Network

Inside
NetworkFirewall

Router

Figure 2: A firewall with a DMZ on a third network attached to the firewall router. Some commercial
products are configured this way, as well as custom firewalls.

49

Inside
Network

Packet
Filtering
Router

Packet
Filtering
Router

DMZ
NetworkOutside

Network

Figure 3: A screened network as a DMZ. The “firewall” is enclosed by the dashed line.

50

Inside
Network

Outside
Network

Packet
Filtering
Router

Packet
Filtering
Router

Application
or Transport

Proxy
Server

Figure 4: A network using a proxy server. Some commercial products combine all of the machines
shown in the dashed lines into one to reduce the cost.

51

	Introduction
	The Need for Firewalls
	Firewall architectures
	Packet filtering
	Packet Filtering with State
	Improving Packet Filter Specification

	Proxies

	Firewalls at various ISO network levels
	Physical layer
	Data link layer
	Filtering on MAC address
	Bridging firewalls

	Network
	Network- and host-based filtering
	Multicast
	Network Address Translation

	Transport
	Presentation
	Application

	Other approaches
	Distributed Firewalls
	Dynamic firewalls
	Normalization
	Signature-based Firewalls
	Transient Addressing

	Firewall Testing
	What firewalls do not protect against
	Data Which Passes Through the Firewall
	Servers on the DMZ
	Insider Attacks

	Future Challenges for Firewalls
	VPNs
	Peer-to-peer Networking
	HTTP as a ``universal transport protocol''

	Conclusion

